Enrollment No:	Exam Seat No:
----------------	---------------

C.U.SHAH UNIVERSITY

Summer Examination-2019

Subject Name: Linear Algebra-I

Subject Code: 4SC03LIA1 Branch: B.Sc. (Mathematics)

Semester: 3 Date: 15/03/2019 Time: 02:30 To 05:30 Marks: 70

Instructions:

- (1) Use of Programmable calculator & any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

Q-1 Attempt the following questions: (14)

- a) Define: Basis and Dimension (02)
- b) State Cauchy-Schwarz's inequality. (02)
- c) Define: Sub Space (01)
- d) Union of two subspaces is subspace.-True or False? (01)
- $e) \quad \dim(P_4) = \underline{\hspace{1cm}}. \tag{01}$
- f) For a bijective mapping $T: \mathbb{R}^5 \to \mathbb{R}^5$ then the rank of T is _____. (01)
- g) $T = \begin{bmatrix} 1 & k \\ 0 & 1 \end{bmatrix}$ is the matrix form for shear in the y-direction on R^2 . True or False? (01)
- h) Find d(u,v) if $u = (u_1, u_2) = (2,5)$; $v = (v_1, v_2) = (5,3)$ & inner product space is $\langle u, v \rangle = 4u_1v_1 5u_2v_2$ (01)
- i) Find the value of k for which the vectors (2,0,0), (0,4,0) and (0,0,k) are linearly dependent. (01)
- j) Suppose $T: V \to W$ is a linear transformation where $\dim(V) = \dim(W)$. Then which of the following is true? (01)
 - a) T is injective b) T is invertible c) T is surjective d) none of these
- k) Let $T: V \to W$ be a linear transformation. What is the rank-nullity formula? (01)
 - a) $\dim(V) = rank(T) nullity(T)$
 - b) $\dim(W) = rank(T) + nullity(T)$
 - c) $\dim(W) = rank(T) nullity(T)$
 - d) $\dim(V) = rank(T) + nullity(T)$
- 1) Define: Angle between two vectors. (01)

Attempt any four questions from Q-2 to Q-8

Q-2 Attempt all questions (14)

a) Let $V = \{(a_1, a_2) : a, b \in \mathbb{R}\}$ and $F = \mathbb{R}$ with the given addition and scalar multiplication of V as follows:

$$(a_1, a_2) + (b_1, b_2) = (a_1 + b_1 + 1, a_2 + b_2 + 1)$$

(07)

$\alpha(a_1, a_2) =$	$= (\alpha a_1)$	$+ a_1 -$	$-1.\alpha a_2$	$+a_2$	– 1).
$\omega(\omega_1,\omega_2)$	(00001	. ~1	1,0002	. 002	-).

Show that V is a vector space over \mathbf{R} .

b) Define: Vector space.

(07)

Also Check whether the following are subspaces of vector space V.

i)
$$W = \{(x, y, z) | x^2 + y^2 + z^2 \le 1\}; \quad V = R^3$$

ii)
$$W = \{(x, y, 3) \in \mathbb{R}^3 : x, y \in \mathbb{R}\}; V = \mathbb{R}^3.$$

iii)
$$W = \{(x, y, z) \in \mathbb{R}^3 : 2x - y + z = 1, x - 3y + z = 0\}; V = \mathbb{R}^3$$

Q-3 Attempt all questions

(14)

a) Which of the following are linear transformations?

(06)

i)
$$T: p_2 \to p_2$$
, where $T(a_0 + a_1x + a_2x^2) = a_0 + a_1(x+1) + a_2(x+1)^2$

ii)
$$T: \mathbb{R}^2 \to \mathbb{R}^2$$
; $T(x, y) = (3x + 2y, 5x - 6y)$

- **b)** Prove that the set $S = \{(1,2,1), (2,1,1), (1,1,2)\}$ is Basis of \mathbb{R}^3 . (04)
- c) Express (3,4,6) as a linear combination of $\{v_1, v_2, v_3\}$, Where $v_1 = (1,-2,2), v_2 = (0,3,4), v_3 = (1,2,-1)$.

Q-4 Attempt all questions

(14)

- a) Consider the basis $S = \{v_1, v_2\}$ for R^2 , where $v_1 = (1, 1), v_2 = (1, 0)$ and and let $T: R^2 \to R^2$ be the linear transformation such that $T(v_1) = (1, -2)$ and $T(v_2) = (-4, 1)$. Find T(x, y) and T(5, -3).
- **b)** If $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined by T(x, y) = (2x y, 8x + 4y) then find the range of T, rank of T, Ker (T) and nullity of T. (05)
- c) Find the domain and co-domain of $T_2 \,^{\circ} T_1$ and find $(T_2 \,^{\circ} T_1)(x, y)$. a. $T_1(x, y) = (x - 3y, 0)$ and $T_2(x, y) = (4x - 5y, 3x - 6y)$ b. $T_1(x, y) = (2x, -3y, x + y)$ and $T_2(x, y) = (x - y, y + z)$

Q-5 Attempt all questions

(14)

a) Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be the L.T. defined by T(x, y, z) = (x + 2y + z, 2x - y, 2y + z). (07)

Find the matrix representation of T with respect to basis

- (i) S_1
- (ii) S_1 and S_2
- (iii) S_2 and S_1 ,

where $S_1 = \{(1,0,0),(0,1,0),(0,0,1)\}$ and $S_2 = \{(1,0,1),(0,1,1),(0,0,1)\}$ for \mathbb{R}^3 .

- **b)** Prove that linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ is isomorphism. (04) Where T(x, y, z) = (x+3y, y, 2x+z)
- c) Explain: Reflection operators (03)

Q-6 Attempt all questions

(14)

a) Which of the following set S of vectors/polynomials in vector space V are linearly dependent or linearly independent? (06)

- ii) $S = \{2 + x + x^2, x + 2x^2, 2 + 2x + 3x^2\}; \quad V = P_2$ **b)** Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be linear transformation defined by (06) $T(x_1, x_2, x_3) = (x_1 - x_2 + x_3, 2x_2 - x_3, 2x_1 + 3x_2)$ determine whether T is one-one. If
- c) Check whether the set $V = \{(x, e^x): x > 0\}$ is a vector space or not with the (02)given operation: $(x, e^x) + (y, e^y) = (x + y, e^{x+y})$ and $(x, e^x) = (\alpha x, e^{\alpha x})$.

Q-7 Attempt all questions

so find $T^{-1}(x_1, x_2, x_3)$.

i) $S = \{(4,-1,2), (-4,10,2), (4,0,1)\}; V = R^3$

- Let S be a finite set of vectors in a vector space V over a field F. The set of all (06)linear combinations of the vectors in S forms a smallest subspace of V containing S.
- **b)** If V and W are vector spaces over a field F and $T:V \to W$ a linear transformation (04)then Ker(T) is a subspace of V.
- c) Find the space generated by $v_1 = (1,3,0), v_2 = (2,1,-2)$. Examine if (04) $v_3 = (-1, 2, 3), v_4 = (4, 7, -2)$ are in the space.

Q-8 Attempt all questions

- (14)Find the cosine angle between given vectors and also verify Cauchy-Schwarz (05)inequality for u = (1,0,1,0) & v = (-3,-3,-3,-3).
- **b)** Find $\langle f, g \rangle$, ||f|| and ||g||, if f(x) = 3x 5 and $g(x) = x^2 + 1$ and the inner product (05)is defined by $\langle f, g \rangle = \int_{0}^{1} f(x)g(x)dx$.
- Prove that $\langle u, v \rangle = 2u_1v_1 + u_2v_2 + 4u_3v_3$ is an inner product space on \mathbb{R}^3 . (04)

(14)